對大數據理性卻不迷信,Netflix 如何用 AI 顛覆娛樂產業?

評論
評論

本文為 AppWorks 提供,作者為 AppWorks 分析師蘇怜媛

串流影音龍頭 Netflix,正在應用 AI 技術顛覆傳統的娛樂產業,透過個人化推薦,將不同但更適合的內容推送到個別用戶眼前。對 AI 領域的創業者來說,來自 Netflix 最重要的啟示,就是產品與服務未必要是人人追逐的大主流,相反地,讓多元、長尾的內容,為個別用戶帶來最大價值,才是 AI 時代最重要的顛覆力量。

Netflix 的娛樂帝國正在成型。五年來,Netflix 股價大漲十倍,並一度在今年六月市值突破 1,700 億美元,超越 Disney,儘管隨後股價回檔,但成長力道依舊強勁。今年第二季,Netflix 共新增 620 萬用戶,其中 510 萬來自美國以外的海外市場,根據 Cowen 預估 ,Netflix 海外用戶在 10 年內,將從 2018 年底的 8,360 萬,以每年平均 20% 的速度成長至 2.55 億。

Netflix 影音內容的質量與數量,也在同步提升。今年 Netflix 入圍 112 項艾美獎,首度超越歷年大贏家 HBO 的 108 項,顯示致力於拍攝原創的策略終獲碩果。根據《經濟學人》的報導 ,Netflix 今年的內容投資將達 120 至 130 億美元,超越任何一家電影公司、電視台 (不含體育頻道),用戶每年可收到 82 部電影 (每年華納兄弟推出 23 部電影,Disney 則為 10 部),正在製作或採購的電視節目則有 700 部,其中包括 100 部劇本和喜劇、數十部紀錄片和兒童劇、脫口秀喜劇,以及無劇本的真人秀和脫口秀節目。

Netflix 拍攝原創內容的標準是什麼?以及,Netflix 又是如何讓觀眾在上千種影音內容中,找到自己喜歡的影片?

重點不是最優質的內容,而是「每小時觀看成本」

Netflix 的商業模式,奠基於向用戶收取固定月費。對公司來說,最重要的任務就是提供足夠「優質」的內容滿足用戶需求,這樣用戶便沒有理由離開平台。而作為串流影音服務商,Netflix 並不像傳統電視台,受限於節目表以及每日播放 24 小時,而是能夠提供無限的影音內容供用戶隨時選擇,因此 Netflix 所認定的「優質」內容,其實是針對個人而言的,因為他們能提供各種類型的內容 (無論大眾或小眾) 給長尾市場。

身為一間位於矽谷的科技公司,Netflix 經常被誤解為運用演算法來決定原創內容,但實際上,在內容創作 Netflix 給予創作者相當大的自由,且時常強調他們並不會根據用戶行為,來影響原創內容的方向,產品長 Ted Sarandos 曾提及「千萬不要沈溺於演算法,過去的資訊,很有可能限制對於未來的想像力。」

大數據與演算法對於 Netflix 來說,是運用在評估某個作品上架後,是否符合成本效益。公司在 官方網站 上明講:評估內容成效的關鍵指標是「每小時觀看成本」(cost per hour viewed),亦即「這個內容是否能在一定的成本內,最大化用戶觀看時數」。由此可見,Netflix 想的並不是「這個作品是否是最優質的內容」或「這個作品是否能吸引最多的觀眾數」,而是「只要這個作品,能吸引一定數量級的觀眾群,並且符合每小時觀看成本的門檻」。

▲Netflix 在官網清楚說明挑選影音作品的標準 (圖片來源 )

也因此,Netflix 的原創內容其實是相當多元的。從英國女王傳記《王冠》、懸疑驚悚片《怪奇物語》、現代科技反思路線《黑鏡》到青少年霸凌題材《漢娜的遺言》,不管是什麼類型、多少製作成本,只要成本效益指標夠好,都會被 Netflix 認為是適合製作的好內容。也因此,Netflix 製作影集成本的範圍很廣,《王冠》的每集 製作成本 高達 1,300 萬美元,而《漢娜的遺言》「只有」約 500 萬美元。相對的,一旦不符合 Netflix 的成本效益評估,公司便會決定停止該內容,例如 2017 年中宣告停拍《超感 8 人組》與《布朗克斯:街頭少年音樂夢》,這兩部影集只各拍了兩季與一季。

相較於 Netflix 的長尾策略,其他電視台則較傾向重壓資源在單一內容上,並預期能擄獲所有觀眾的心。HBO 的大製作《冰與火之歌》,號稱在 最後一季 的每集成本將創新高至 1,500 萬美元 ,另外一個作品《西方極樂園》的 每集成本 也據稱達到 1,000 萬美元。上述兩部作品,也於今年艾美獎各拿到入圍 22 項與 21 項的好成績,為入圍數最多的前兩名作品,相較之下,Netflix 的《王冠》只入圍了 13 項,但可別忘了 Netflix 是總入圍數最多的贏家,其他獎項,則是由另外 40 個作品拿下,證明了 Netflix 投資於各類型題材的模式。

Netflix 的影片推薦系統,讓你可以無腦挑影片

一旦擁有上千種可滿足各類用戶的優質內容,Netflix 另一件重要的任務,便是用更有效率的方式,把適合的內容,推薦給有興趣的人。精準內容推薦並不是一件新奇的事,Amazon、Facebook、Google 都是藉由用戶歷史行為資料,來推薦商品或產出個人化頁面,以優化使用者體驗。但這件事對 Netflix 尤其重要,因為在使用影音串流平台時,用戶並沒有很明確的目的要購買商品或搜尋資訊,大多數的時候,是漫無目的尋找能打發時間的內容,要是 Netflix 無法在短時間內精準推薦用戶喜歡的影片,用戶很容易就被別的平台或傳統電視吸引走。根據 Netflix 2015 年發表的 文章 ,80% 的用戶觀看時數都是靠推薦而來的,也佐證了這一點。

為了滿足口味各異的用戶們,Netflix 一直致力於優化推薦演算法。在過去,Netflix 試圖去預測每個用戶對於每部影片的評價 (分數 1-5),藉此推薦用戶可能有興趣的內容。不過隨著 Netflix 掌握更多用戶行為資料 (包括用戶觀看的內容、使用設備、觀看時間、觀看頻率、觀看地點),現在更以機器學習 (Machine Learning) 來建立推薦演算法,以捕捉更多 rule-based 演算法可能漏掉,但對預測喜好相當有幫助的重要資訊,例如:觀看影片的順序、不同因素之間的交互作用。

▲讓 Netflix 演算法來推薦最合你胃口的影片內容

有使用 Netflix 的人都知道,Netflix 的首頁是由不同主題的影片列組成的,這些主題選擇、影片挑選、排列順序背後便是由不同的 演算法 驅動:

  • Personalized Video Ranker, PVR (某類型影片):推薦你喜歡的影片類型
  • Top-N Video Ranker (最佳推薦):推薦你喜歡的影片,和 PVR 的差別在於這邊沒有類型的限制
  • Trending Now (現正熱播):依據當下熱門話題,如聖誕節慶,推薦你喜歡的影片類型
  • Continue Watching (請繼續觀賞):推薦你可能會想繼續觀看的影片
  • Video-Video Similarity (因為您觀賞過 ...):推薦用戶可能會想看的類似影片
  • Page Generation:最後,將上述演算法排序出最適合你的的個人化首頁

上面的演算法看似很多種,不過大致上可以歸結為兩類:Content-based filtering 與 Collaborative filtering method。簡單來說,前者是根據影片本身特性,找出類似影片並推薦給用戶,後者則是先找出喜好類似的用戶,藉此判斷 A 可能會喜歡 B 看過的影片。關於詳細的演算法判斷流程,有興趣的人可以參考 CS50 的影片。

AI 演算法除了應用在推薦影片,不知道大家有沒有發現,其實 Netflix 還會依照個人興趣,來 客製化電影圖像 !就拿《黑色追緝令》這部片來說好了,如果用戶 A 曾看過較多鄔瑪舒曼的電影,則演算法會判斷 A 是鄔瑪舒曼的粉絲,因此會呈現在電影海報上;同理可證,如果 B 用戶是約翰屈伏塔鐵粉且看了很多他過去的作品,那麼演算法當然會用約翰屈伏塔來吸引 B 用戶。

▲Netflix 連電影圖像都為你客製化 (圖片來源)

擔任 Research and engineering director 的 Justin Basilico 在受 NVIDIA 訪問時提及,公司透過 A/B test 來不斷優化推薦演算法,而由於推薦系統的成效短期內難以衡量,因此 Netflix 鎖定的是長期指標,如:用戶每天觀看時數、某段期間觀看天數。

推薦系統在全球化時遇到的挑戰

由於 Netflix 的服務地區涵蓋 190 個國家,用戶多達 1.3 億,用戶觀看影片的喜好受到各種因素影響,因此在設計推薦系統時,也面臨了許多 挑戰

首先,由於某些內容供應商在與 Netflix 談授權時,會限制該影片只能在某地區,或某段期間上架,因此部分國家的用戶無法觀看這些影片,而演算法便會因此判定這些用戶對這些影片沒興趣。又或者是,A 影片的授權期間只有一個月,B 影片的授權期間長達一年,而造成 B 影片的觀看次數較 A 高出很多,此時演算法也會判斷 B 影片的熱門程度較 A 高,以上狀況都會造成演算法誤判用戶的喜好。

另外,Netflix 用戶橫跨這麼多國家,每個地區的文化習俗、語言又不盡相同,因此 Netflix 在設計推薦系統時,也須特別考量到用戶的所在地與熟悉的語言。譬如說,印度用戶可能會較偏好寶萊塢電影。語言方面,由於多數的用戶,可能會偏好觀看自己熟悉語言的電影,因此系統也應該要納入這些因素來設計演算法,但問題是系統並無法取得用戶熟悉哪些語言的資訊,因此只能靠用戶過去觀看行為來判斷。

為此,Netflix 也持續增加推薦演算法考量的因素,包括影片能上架的地區 / 時段、用戶所在地、用戶看過影片的語言,藉此不斷優化推薦演算法的精準度。

總結來說,由於用戶對於觀影這件事通常有獨特偏好,因此即便是後進者,只要能掌握觀眾喜好,都有機會趁勢而起,Netflix 便是靠著許多優質小眾內容,抓住長尾市場而崛起。不過,當各家串流影音業者,例如 Hulu、Apple、Disney 也都狹著雄厚資金與原創內容加入戰局,未來誰將在這場戰役中勝出,目前下定論都過早。

唯一能確定的是,如果影音平台能藉由推薦系統,精準地將內容呈現給最適合的觀眾,必定能大幅提升用戶觀影體驗,如此一來,用戶也就有更大的誘因繼續留在平台上,而不會輕易被新進業者的低價促銷或大製作內容吸引走,這不僅是訂閱制影音平台的護城河,也是在消費性領域投入 AI 創新最重要的原則之一。

想要了解更多有關 AI 創業與創新的資訊,歡迎加入 AppWorks 粉絲專頁

Photo: Pexels


精選熱門好工作

賣家關係維護專員

樂購蝦皮股份有限公司
臺北市.台灣

獎勵 NT$20,000

DBA資料庫管理師

酷遊天國際旅行社股份有限公司
臺北市.台灣

獎勵 NT$20,000

平台測試技術專員 QA Specialist

SHOPLINE 商線科技有限公司
臺北市.台灣

獎勵 NT$20,000

評論