歐盟高規格 GDPR 數據保護法上路,AI 新創該如何應對?

GDPR 可算是首部「單挑」應用 AI 與 Big Data 的隱私保護法令,試圖直搗黑盒子核心!
評論
Photo: Visual Hunt
評論

本文為 AppWorks 提供,作者王琍瑩律師 (AppWorks 法務輔導長/明日科技法律事務所主持律師)。

如果你是 Apple、Google 或 Yahoo 會員,最近登入帳號,一定會收到新版的隱私條款聲明,要求你按下同意。多數人可能直覺會以為,這是在 Facebook 的「劍橋分析」風暴後,各家業者亡羊補牢的對策。其實並非如此,而是影響層面更深更廣的歐盟個資保護新法 GDPR (General Data Protection Regulation),即將在 5 月 25 日上路,是它讓大家嚴陣以待。

隱私權是個超過百歲的古典法律概念,但究竟為什麼, GDPR 會引發全球業界草木皆兵?在注重蒐集用戶數據的 AI 時代,這會產生哪些影響?

首先,GDPR 在適用對象、規範內容和處罰等面向,都宣示前所未見的管制力道。其次,GDPR 明文確認「賦權」(Empowerment) 與「當責」(Accountability) 的觀念,徹底顛覆政府與民間「上有政策、下有對策」的表面和諧。再者,GDPR 可算是首部「單挑」應用 AI 與 Big Data 的隱私保護法令,試圖直搗黑盒子核心。

可以想見, GDPR 上路後,數據利用與用戶隱私之間的權衡與折衝,將成為企業無法迴避的挑戰。壞消息是,GDPR 的「最廣、最嚴、最昂貴」讓企業稍有不慎,就可能嚴重受罰;好消息是,在與 AppWorks Accelerator 校友企業進行法務輔導的過程中,針對實務運作,整理出這篇「最小、最大、最透明」的教戰守則,在此公開分享,希望提醒企業看待 GDPR 不只是無奈的法遵成本,更是協助產品與服務最佳化的關鍵。

GDPR 之最廣、最嚴、最昂貴

GDPR 引發業界焦慮恐慌的紅色警戒,主要原因有以下三點:

1、 適用對象史上最廣

GDPR 適用於任何在歐盟設立據點的企業,無論個資處理是否發生在歐盟境內。相對的,如果企業的產品或服務,有部分用戶是歐盟居民、蒐集或處理到歐盟居民的個資,無論是否為設立在歐盟的企業、不管是 B2C 或 B2B 領域,都在 GDPR 涵蓋的射程內。當然,企業請不要忽略,隱私保護不只影響到用戶黏著度、交易夥伴的合作意願,隨著 GDPR 帶動全球法規風向,法遵稽核勢必也將成為投資與併購案件 Due Diligence 的重要環節。所以,不論企業是否直接適用 GDPR,沒有人是局外人。

2、 規範內容史上最嚴

GDPR 整份文件,光是前言就有 173 點,內文更長達 11 章共 99 條法規,鉅細靡遺規範了什麼才是合法、公平與透明的數據蒐集、處理、利用,包括:使用者權利、系統架構、資安管理、風險評估、通報機制、專責人員、標章制度、跨境傳輸、機關權限、爭議處理、緊急措施等。其中許多定義釐清與執行難度,目前仍存在爭議,有待將來累積個案經驗與實務見解,且戰且走。

3、 天價罰鍰史上最貴

在台灣,現行「個人資料保護法」對違法企業,最高按次處以新臺幣 5 萬元以上、50 萬元以下罰鍰。但一旦違反 GDPR 情節嚴重,最高可能處以 2,000 萬歐元,或全球年營業額 4% 的罰鍰。無論是資料控制者 (Data Controller)、協助進行資料儲存或傳輸的資料處理者 (Data Processor),都可能受到裁罰。

教戰守則之最小、最大、最透明

GDPR 引進「賦權」與「當責」的觀念,將一直以來被誤認為配角的用戶與企業,重新拉回鎂光燈下,企業不再只是配合主管機關規定,或是請律師擬定隱私權政策文件的被動角色,這主要包括三個面向:

1、 最小限度利用個資

隨著科技演進,個資的定義愈來愈廣,泛指一切可識別化的個人資料。GDPR 明文指出,以不可逆的方式得出完全無法辨識出用戶個人的「去識別化資料」(Anonymous Data) ,雖不屬於隱私保護範疇,但可透過交互比對、勾稽辨識出用戶個人身分的「去連結化資料」(Pseudonymised Data) ,仍可能構成個資。相對的,GDPR 也確立個資的蒐集、處理、利用都必須遵循「最小限度原則」,也就是不得逾越預先設定的「特定目的」。

從數據分析的效率而言,蒐集資料本來就不是愈多愈好,過多的雜訊、不知所以的運算,結果也只是 “Garbage in, garbage out.” 而已。話雖如此,卻是知易行難,舉例來說,當用戶使用 Google 的搜尋服務,Google 除了依賴輸入的關鍵字外,可能也參照用戶的 Gmail 使用行為、結合即時的位置資訊,從而得出最佳化的搜尋結果。類似這樣的數據再利用 (Data Recycling),便可能與「最小限度原則」相扞格。GDPR 為此提供了「特定目的相容性」的判斷基準,包括新舊目的關聯性、資料蒐集的背景脈絡、用戶與企業的關係、用戶的合理期待、允許使用的結果、資料的本質等等,可供企業斟酌參考。

2、 最大程度賦權用戶

個資永遠屬於當事人,不是任何企業可以據為己有。GDPR 強調「賦權」用戶,包括接取資料權 (Right to Access)、遷移資料權 (Right to Data Portability)、更正權 (Right to Rectification) 與刪除權 (Right to Erasure / Right to Be Forgotten) 。事實上,由於用戶本人對個資的正確性最為熟悉,企業如果能夠藉由「賦權」機制,鼓勵用戶隨時主動更新個資,像玩樂高積木一樣,拼湊出自己認為的長相,不但能夠落實 GDPR 的法遵要求,更有助於優化數據分析。典型的例子,就是過濾垃圾郵件和 Facebook 廣告偏好 (Ad Preferences) 的設定機制,由用戶主動參與特徵標示,使企業得以進行更精準、更值錢的數據分析。

以實現「賦權用戶」為前提,GDPR 特別要求企業「講人話」來取代晦澀難懂的隱私政策。企業必須用最直接、最淺顯易懂的方式,揭露隱私政策,並且遵循「確認後同意」(Affirmative Consent) 的流程,前者例如「Multilayered Privacy Notice」,後者例如「Opt-in」機制。Facebook 在「劍橋分析」事件爆發後,陸續提出「Privacy Shortcut」、「Clear History」這些隱私保護優化措施,便是著眼於此。

3、 最透明的決策機制

我們知道機器學習,尤其深度學習,有如在黑盒子內進行的過程,就像人類的神經網路,究竟如何決定數據的關聯性與權重以形成決策,向來是個難解的謎團。但是,我們也知道,過去人們以為電腦一定比人腦準確、不受外在因素影響,在人工智慧的領域已經不再適用,「演算法公平性」的議題因此興起。GDPR 強調「透明處理原則」,針對「個人化自動決策」(Automated Individual Decision-Making) 賦予用戶請求解釋、拒絕適用的權利 (Right to Explanation / Right Not to Be Subject),其實就是將近年來學術討論逐漸熱絡的「可信任/解釋的人工智慧」(Trustable/Explainable AI) 直接納入法律,試圖引起全面性的重視。

「可信任/解釋的人工智慧」主要探討如何盡可能減少黑盒的節點、避免演算法偏見與歧視。當「個人化自動決策」,對用戶形成法律效果或其他重大影響,包括個人資料的「剖析建檔」(Profiling),企業必須確保模型本身是由正確的數據訓練出來,不得標示種族膚色、宗教信仰、政治立場、性傾向等可能導致歧視的特徵,並應事先向用戶說明自動決策的存在、取得用戶同意。

此外,企業至少要有能力在足以保護用戶權益的範圍內,簡要說明怎樣的數據會導致怎樣的決策、數據的變動如何影響決策的變動,並賦予用戶可以拒絕適用、表達意見、要求「工人」智慧介入判斷的權利。

舉例來說,如果線上汽車保險業務完全透過演算法,自動決定用戶的保費金額,企業必須能夠說明如何計算保費高低?是由哪些因素所決定?例如,是受到用戶年齡、健康狀況、駕駛習慣、肇事紀錄等因素影響。而如果用戶認為權益受損,則可以表示異議。

GDPR 的「透明處理原則」,除了挑戰人工智慧的黑盒子以外,在技術層面也不斷對工程師喊話,主張從設計端開始的隱私保護 (Privacy by Design)。當企業判斷某項個資處理環節,可能侵害用戶權益時,就必須進行「資料保護影響評估」(Data Protection Impact Assessment),提出解決方案,必要時並應向主管機關彙報。此外,GDPR 也鼓勵企業常設資料保護專責人員 (Data Protection Officer) 協助建立常規,並建議主管機關與業界,協力建立行為準則與認證機制,共同促成法的實踐。

結語:企業要當太陽,不當北風

對台灣企業來說,即便完全遵守「個人資料保護法」,是否仍有違反 GDPR 的疑慮,恐怕是現階段最擔心的事情。有鑑於此,國發會已陸續邀集各部會研擬因應策略,除了進一步了解有無參照修法的必要之外,並針對各式各樣實務疑慮,循官方途徑展開協商。在這個過渡時期,我們建議企業兼顧天平的兩端,在策略方向上,必須掌握數據作為商業競爭的致勝關鍵,而在執行層面,仍應落實個人資料歸個人控制的原則,不能偏廢。

其實,當我們用資料科學的角度來解讀,就會清楚發現企業和用戶並非對立,而是站在同一陣線。看待 GDPR 未必要從法遵成本的角度來思考,當企業提供體貼用戶的隱私保護,確保用戶心甘情願提供個資、樂於即時更新資料,便能降低數據分析錯誤的風險,並優化產品與服務的效能與價值。

有了以上的認識,在 GDPR 上路後的數據利用,反而更像是「北風與太陽」的故事。一旦隱私保護內化成為企業 DNA,企業與用戶都將因此受益,到時候,如何處理數據不觸法,便不再是一個恐怖的話題。

歡迎所有 AI / Blockchain 新創加入專為你們服務的 AppWorks Accelerator


警戒升級,店面安全也升級!月租型 HomeSecurity AI 店家防護,小店業者無痛導入

監視器不稀奇,不過在盡量不外出的管制期,還要另外花錢購買監視器,對於備受衝擊的業者來說彷彿又多剝一層皮。幸好還有台灣大寬頻月租型「HomeSecurity AI 店家防護」,每月不用千元即可遠端守護店面安全。
評論
Photo Credit:iStock
評論

全國三級疫情警戒,市景進入半封城的模樣,人人自危。許多店家也只好選擇暫停營業,減少營運成本;尤其雙北限制餐廳內用後,不少店家也改做外帶/外送服務,關閉原本的室內用餐空間。門可羅雀不是最可怕的,最可怕的是當在家防疫、減少外出的同時,店面安全出現破口,遭有心人士闖空門。既然花錢請一個人專門顧店或是花時間親自坐鎮都不是好辦法,此時引進智慧監控系統,才是明智之舉。

月租型HomeSecurity AI 店家防護,安心無負擔

監視器不稀奇,不過在疫情嚴峻期間,花費破千、破萬的預算購買昂貴監視器,對於備受疫情衝擊的業者來說,彷彿又多剝了一層皮。此時此刻最需要的,應該是能夠減緩大筆支出,陪伴業者度過艱難時期的店家防護系統。

對此,台灣大寬頻的月租型「HomeSecurity AI 店家防護」是很好的解決方案,不只遠端守護店面安全,搭配指定光纖上網方案,每月也只要 999 元起的價格,十分超值划算。

異地監控店家,同步更新雲端、方便即時察看與回放

價格好入門可不是「HomeSecurity AI 店家防護」唯一的優點。一般來說,架設閉路電視系統監控、將監視器的影像即時上傳網路,同時還要 AI 智慧監控功能,總要耗費不少資金成本。不過為了讓眾多小店家業者享有同等級的監控服務,台灣大寬頻推出月租型「HomeSecurity AI 店家防護」能以相對實惠的方案,滿足小型店家的科技監控需求。

首先,店主可以根據店面需求,選擇「槍型」或「吸頂」等網路攝影機款式。接著,店主可以跨裝置檢視監控畫面,無論是桌機、筆電、智慧型手機、平板,都能觀看 1920x1080p 的高畫質即時監控影像;此外,分割畫面也能讓店主同時監看多角度或連鎖分店的情況。

拜先進的雲端技術之賜,「HomeSecurity AI 店家防護」的監控影像可以即時串流雲端,店主能不限時間、地點登入網頁或 App 服務,觀看各網路攝影機的即時影像與錄影回放,不必再辛苦傳輸資料畫面或手動上傳雲端,監控管理十分方便。

AI 影像告警,聰明防竊;另有最高 36 萬竊盜損失補償

更讓人安心的是,「HomeSecurity AI 店家防護」最重要的核心技術「AI 人像辨識」。簡言之,就是網路攝影機能將拍攝畫面快速回傳至技術平台並分析數據,進而精準判斷畫面中是否有「人」入侵。一旦AI影像告警確認店內有人為入侵,便會立即以電話、簡訊、App 推播等管道主動通報緊急聯絡人。

不只聰明防竊,也另有完善的配套讓店主安心。萬一真的不幸發生竊盜損失,台灣大寬頻和富邦產險合作,能提供竊盜損失補償,因此只要在案發 30 天內,以報案後憑警察機關刑事報案證明三聯單以及相關影像證據提出申請,店主最高可獲得每年 36 萬元的補償。

防疫期間,同島一命。台灣大寬頻推出「HomeSecurity AI 店家防護」以相對平易近人的方案,提供台灣小型企業店家安心智慧的守護,以嚴密堅實的智慧監控,陪伴業者迎來雨過天青的彼日。