從工人智慧到人工智慧,期待又怕受傷害? Pentland 教授與 Google 簡立峰表示…

當有些人喊著 AI 會殺人,有些人卻搶先用 AI 來做聰明的事,甚至是救人一命!
評論
評論

本篇來自 研之有物 ,INSIDE 經授權轉載。

當有些人喊著 AI 會殺人,有些人搶先用 AI 來做聰明的事,甚至是救人一命!本文取自中央研究院「機器學習月」與「人工智慧跨域領袖營」活動內容,聊聊各領域最新的 AI 發展與應用。

用 AI 救人:觀察細微脈博

「余憶童稚時,能張目對日,明察秋毫。見藐小微物,必細察其紋理,故時有物外之趣。」若你曾在國文課本讀到這段,可曾驚嘆沈復的好眼力?

現在你可以拍拍沈復的肩膀說「以 AI 細視,汝更覺呀然驚恐」。因為人工智慧的影像處理技術宛如一副神奇眼鏡,能看到肉眼察覺不到的細微變化,例如:當血液隨脈博通過臉部,造成的膚色變化。

▲心跳訊號放大 100 倍的手機拍攝影像,可以看見當血液被打上來通過臉部,皮膚顏色明顯變紅 (右圖)。 

這個影像放大技術反之,也能藉由偵測臉部皮膚顏色變化的頻率,回推心跳速率。對於新手爸媽而言,常見的焦慮是「總想確認寶寶還在呼吸嗎」,因為嬰兒熟睡時一吸一吐的胸部起伏相當細微,從外觀難以分辨。

發展這個影像放大技術的團隊,發現也能從嬰兒睡覺的影像推估心跳速率,數值準確度可與醫療監測器相比,有機會應用於家庭日常的呼吸監測,預防嬰兒猝死症 (SIDS)。

▲脈博訊號放大 150 倍的影像,可以透過血液流經臉部的膚色變化頻率,推估嬰兒脈博的速率。

大眾看新聞時,經常好奇螢幕中人說話是否屬實,例如當立委說出「一生監督你一人」時,政府官員是否有動情。表情可以透過臉部肌肉控制,而脈搏跳動加快、引起血液流經臉部的膚色變化,透過這個訊號放大技術解析,就藏不住心跳了。

用 AI 聚集靈感:社會物理學

俗話說:「三個臭皮匠,勝過一個諸葛亮」,但如果臭皮匠高達成千上萬名呢?

透過社群網絡,串起成千上萬名臭皮匠互相交流資訊、溝通意念,並透過資料科學依此預測未來的行為、找出問題的對策,可說是「社會物理學 (Social Physics)」的奧義。而提倡社會物理學這門新科學之人,是被《富比世》雜誌譽為「全球 7 大權威資料科學家之一」的 Alex “Sandy” Pentland 教授。

來自美國麻省理工學院的 Alex “Sandy” Pentland 教授,在機器學習月演講中向大家提問:「在這裡有多少人認為自己是獨立的個體?」

儘管 YouTube 出身的 HowHow 堪稱「邊緣人中的霸主」,而生活中也有許多人在群體中感到孤立,但 Alex “Sandy” Pentland 教授指出 ,無論在虛擬社群和真實社會中,沒有人是獨立切割的。

每個人都是社會的一部分,共享資料、共享資訊,這時意念彷彿化為一條時間長河、流動著,每個人涉身其中,從彼此的經驗想法中學習,最終成就我們自己的習慣和興趣。

而這些可共享、可分析的資料從何而來?就在人們身邊各處──包含通話紀錄、信用卡交易、 GPS 定位紀錄等等,像是糖果屋童話中撒下的「數位麵包屑」,表達著你的生活行蹤與選擇偏好,而差別是不會被森林裡的動物吃掉。

▲數位麵包屑最常見的應用:根據駕駛人手機提供的 GPS 數據,逐分鐘更新交通順暢 (綠色) 或壅塞 (紅色) 情況。

數位麵包屑與臉書 (Facebook) 貼文大不相同,臉書貼文是人們選擇性過濾、編輯的資訊。比起人們自己說自己做了什麼,日常的數位麵包屑反而更能反映個人真實情況。

年齡、性別沒辦法精準表達你是誰,更重要的是你去了哪裡、做了什麼。

Steve Jobs 曾說:「所謂的創造力,只是將事物聯繫起來」,而社會物理學基於貝氏網路 (Bayesian network) 發展,透過數位麵包屑將不同情況聯繫起來,找出「情況 A」和「相關情況」之間的機率關係。

Signal from a phone shown as concentric rings coming from a pedestrian walking on London Bridge.

▲例如,透過數位麵包屑,知道有糖尿病風險的人何時在哪吃飯、或是不善理財的人在哪消費,即時對個人做出提醒,或蒐集數據改善健康或金融政策。 

Alex “Sandy” Pentland 教授再舉例,若在地圖看到 GPS 人流移動到了城郊某一地帶就停止,傳達的資訊是:當大多數人停止前往該區,代表該區容易有犯罪活動。並另以北京的資料指出,若當地的交通網絡完善、社群流動越密集,未來三年該區的經濟成長機率也偏高。這些社群行動觀察,有助於城市規劃與犯罪防治,而且運用的資料無須涉及記名資訊。

社群範圍也能縮小到公司。 Alex “Sandy” Pentland 團隊與美國銀行 (Bank of America) 的電話客服中心合作,實驗若客服員之間有越多的想法交流,是否能降低每通客服電話的處理時間。分析結果發現,比起客服員逐一單獨休息,讓整個客服團隊一起休息更好,因為有助增進團隊間的交談、交流工作竅門,讓處理客服電話的平均時間大幅降低。

從工人智慧到人工智慧,期待又怕受傷害

適合發展 AI 的是「有特定知識」、「行為可預測」的領域,並且應善用「原本就有的資料」,例如臺灣累積豐富的醫學影像,這些影像透過機器學習就能轉換為知識,而非從頭開發網站,去蒐集新的使用者資料。

在 Google 有幾萬名工程師在進行幾千項專案,各種領域都有人嘗試,甚至包含用影像辨識判斷正在飛行是不是母蚊,是的話就擊殺,藉此來斷絕蚊子成為疾病傳染源。簡立峰分享, Google 若進行 5000 項 AI 專案,最後證實有用的不到 10 項,實作後會發現論文演算法講得頭頭是道,但實作後好像不是這回事,許多參數調不出來。

然而,這些過程不是白費。 Google 從這些專案裡的工程師選出 50 位較富經驗者、組成顧問團,再引導大家嘗試各種 AI 專案,而前提是要建立開源文化,開放讓所有員工自由修改程式碼,應用在自己的專案中。

臺灣的組織化領導,讓軟體高手沒有發揮空間,就算有神字輩也只是當兵用。

許多人會好奇,為什麼 Google 軟體開發這麼厲害?簡立峰提到,臺灣生產「硬體」的組織結構,是將軍關在辦公室,帶領生產線的幾千名士兵,一起完成最後的產品。「軟體」的思維要倒過來,Google 採取「有將軍沒有兵」的模式,人人都是將軍,讓神人站上第一線寫程式,自己 debug 解決問題。

「AI 是當紅的產業趨勢,但我的小孩不是讀這個領域的怎麼辦?」在演講中,一位中年父親提出許多家長會有的疑問。

「通常華人的傳統,生了兩個小孩,一個會讓他出去外面的世界闖,一個會留下來照顧老家……」簡立峰從社會文化與人之常情,比喻臺灣整體產業發展。

在 AI 時代,科學可以突破百分之八九十,但最後一哩路比想像中難度更高。哪裡熱門、大家都趨之若鶩,即使可能史上最大的失敗就在眼前。這是出去闖的孩子會面對的問題。簡立峰提到,臺灣可以參考以色列的產業策略,弱水三千只取一瓢飲,著重發展大市場需要的尖端技術,例如臺灣的鏡頭技術世界知名,就有更多優勢延伸發展電腦視覺領域。

從古至今,地圖視角會影響思維。簡立峰提到,若換個角度看臺灣,別忘了日本、南韓、新加坡、東南亞就在附近,許多 AI 合作機會就在臺灣旁邊。

而若不在 AI 領域,留下來的孩子,則應跟臺灣土地有所連結,發展他國取代不了、有信賴感的產業:例如醫療、食品、農業,讓在外面闖的孩子無論什麼時候回家,都能感受到在地文化、安心踏實。

學界與產業離很遠?創造一個機會齊動腦!

2017 年政府宣示「臺灣 AI 元年」即刻開始,但要落實到業界尚有層層挑戰。為此,科技部與中研院舉辦五天四夜的密集研習,向國內外講師借智慧、聚集學員間的意念流,來討論各產業要懂哪些 AI 先備知識、遇到的問題如何解決。

以臺灣醫療產業而言,優勢是已累積豐富的影像診斷資料,若在保護病人隱私的前提下開放資料,就有機會透過電腦視覺協助醫師診斷病情,或是監測嬰兒老人的睡眠呼吸中止情況。甚至在診間,當病人聽完診斷滿臉問號,這時一旁的鏡頭偵測到病人表情,就能提醒醫生要再多加說明、增進醫病關係。

製造業的學員則回饋,若企業自己架設機房、自己租用雲端伺服器,這種燒錢行為會降低轉型意願,希望政府能提供雲端運算資源的協助,例如國家實驗研究院高速網路與計算中心 (國網中心) 的 GPU 伺服器。

「在華爾街大量招募資料科學家的趨勢下,臺灣的 FinTech (金融科技) 仍受限法規,綁手綁腳無法前進!」來自金融界的學員表示。希望能透過調整金融法規、個資法規,讓去識別化的財務資料成為可應用數據,藉以分析客戶的潛在風險、或預測未來交易。或者,開戶時結合電腦視覺技術,透過影像辨識開戶者是否有異常的心跳表現、說謊的可能性,及早阻止不當的金融交易。

最後,無論是想出去或留下來的孩子,以及學界產業界的人士,若有興趣進一步了解 AI 領域中各技術有何不同,下圖的「資料科學學習地圖」將能作為指引。

▲初次進入 AI 領域,需從核心課程出發,再依興趣或需求轉往「資料探勘」、「網路爬蟲」、「進階應用」方向。 

儘管 AI 之路讓人既期待又怕受傷害,但如同電影《三個傻瓜》所言:「請把手放在心上說『一切都好』,我們的心太容易害怕,你得哄騙它。不管天大問題,告訴你的心『一切都好』,那會讓你有勇氣去面對問題。」


Akamai 服務上新,於邊緣處推動快速創新

Akamai EdgeWorkers 為開發團隊提供豐富功能和工具來創建新的微服務,利用 Akamai 提供的 25 萬台分佈式服務器組成的網絡,在邊緣執行安全而快速的計算,並在邊緣暫存內容,以實現快速交付。
評論
評論

在雲計算技術還沒有大規模普及前,絕大部分企業和組織都需要自建數據中心,或通過託管的方式來部署自己的硬體基礎架構,並在此基礎上為員工和客戶提供服務。取決於業務或其他方面的諸多要求,此時需要部署的數據中心可能有很多個,並廣泛分佈在不同地區,藉此為客戶提供流暢的體驗,並透過多個數據中心保障連續性。在發展的過程中,隨著「雲端」的出現,讓各個組織的計算開始集中。

而當在線直播、無人駕駛、智能家電、物聯網等應用開始陸續深入我們的工作和生活,情況又不同了。以往透過雲平台集中運行和服務的模式,因為距離導致的網絡延遲已經對用戶的使用體驗產生極大影響。為了提供更敏捷、靈活、快速、可靠的體驗,企業需要從最貼近用戶的地方提供服務。因此,邊緣計算就成為最有效的解決方法。

透過將數據的收集、分析和處理等工作,由「雲中心」重新分散到最接近用戶的邊緣位置,企業可以就近為用戶提供服務,通過延遲更低的響應打造更出色的用戶體驗。

「無服務器」的出現,帶來計算方式的革新

以前,當組織需要上線一套業務系統時,首先需要採購並部署相應的服務器硬體,並且要負擔服務器日常運維過程中的管理、維護、補丁安裝、配置等繁瑣任務。

上雲前,組織需要在自己的數據中心,以硬體服務器的方式執行這一系列工作;上雲後雖然簡單許多,但依然需要面對雲服務商提供的虛擬服務器,從本質上來看相關負擔仍相當繁重。

無服務器(Serverless)技術的出現,讓組織可以在不需要考慮服務器的情況下,構建並運行由微服務構成的創新式應用程式與和服務。藉此不僅可以省略基礎架構管理任務,還能為幾乎任何類型的應用程式或後端服務構建無服務器應用程序,更方便、靈活地構建出具備極高可用性的應用。

Akamai EdgeWorkers :為創新賦能

Akamai EdgeWorkers 為開發團隊提供豐富功能和工具來創建新的微服務,利用Akamai 超過 25 萬台分佈式服務器組成的網絡,在邊緣執行安全而快速的計算,並在邊緣暫存內容,以實現快速交付。

當開發團隊在邊緣開啟代碼時,他們會將數據、見解和邏輯推送到更靠近最終用戶的位置。Akamai 的高性能、可擴展式實施模型,可確保數據和計算不會被延遲問題困擾,進而避免對數字化體驗產生負面影響。

在該服務幫助下,開發者可直接在 Akamai 的全球分佈式平台上快速、迭代地創建和部署新服務,以解決問題和自定義交付。

長期以來,Akamai 在邊緣計算的創新和成功實施皆具有優勢。自 1998 年起,便開始為 Akamai 內容交付網絡(CDN)的客戶推出自定義交付邏輯,其他里程碑還包括 2001 年的 Edge Site Includes 、2002 年的 Edge Java 以及 2014 年的 cloudlet 應用程式。

目前, Akamai 在全球擁有超過 4100 個入網點,為 EdgeWorkers 用戶提供出色的邊緣基礎架構規模和範圍,開發人員可以在靠近最終用戶和他們的數字化接觸點的地方部署代碼,以實現盡可能低的延遲。EdgeWorkers 同樣獨立於雲,客戶可以選擇利用 CDN 供應商或雲供應商平台上的無服務器計算功能。在 Akamai 幫助下,客戶可以在整個混合雲或多雲環境中部署單一的無服務器計算平台。

更多相關資訊:https://www.akamai.com/solutions/edge

本文章內容由「猿聲串動」提供,經關鍵評論網媒體集團廣編企劃編審。